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LETTER TO THE EDITOR

A simple model for calculating theP–T phase diagram
of Ti

S A Ostanin and V Yu Trubitsin
Physico-Technical Institute, Ural Branch of the Russian Academy of Sciences, 132 Kirov Street,
426001 Izhevsk, Russia

Received 27 June 1997

Abstract. The FP-LMTO method is used to calculate the total energy and equilibrium lattice
properties for the observed phases of Ti. The temperature dependences of the free energy, specific
volume, bulk modulus, Debye temperature, and Grüneisen constant are found for these structures
within the Debye model. For most quantities a good quantitative agreement with experiment
is obtained. TheP–T phase diagram constructed from the calculated thermodynamical Gibbs
potentials fits well the available room-temperature data on theα → ω transition. The model
suggested predicts the formation of a high-pressureβ-phase in Ti atPω→βT=300 K = 950 kbar, a
pressure which nowadays may be reached experimentally.

The theoretical first-principles investigation of the phase stability of crystals generally
consists in analysing the calculated binding curves for given lattices [1]. These curves
are used to calculate the ground-state properties: the equilibrium volume, cohesive energy,
and bulk modulus [2]. For the high-pressure phases, the quantitative agreement of the lattice
properties calculated atT = 0 with room-temperature experiments is usually unsatisfactory.
The central problem of the microscopic description of structural transformations occurring
in metals under pressure is the development of a consistent model for finite temperatures.
The simplest way to investigate the structural phase transitions on the basis of first-principles
binding curves is to use the Debye–Grüneisen theory. In such a model, the characteristic
Debye temperature2D is calculated in terms of the bulk modulusB, and then the free
energyF(T , V ) is found as a function of2D and the volumeV . The applicability of this
method to the study of particular metals is restricted by the isotropic Debye model and the
assumption of a mean sound velocityv.

Earlier, using for cubic metals the expression for the mean sound velocity [3], the
authors of the paper [4] calculated the temperature properties of 14 bcc and fcc metals
within the Debye model. The temperature dependence of the lattice constant and the linear
thermal expansion coefficient calculated by minimizing the free energy with respect to the
volume agree quite well with the experimental data. Thus the method mentioned seems to
be appropriate for cubic metals. Similar investigations for transition metals, in which the
ground state has a noncubic lattice and the cubic-type structures are high-pressure and/or
high-temperature phases, were not performed.

The interfaces of the group-IVa metals (Ti, Zr, Hf) in the case of simultaneously high
temperature and pressure are not clearly defined as yet. The aim of this article is to
calculate from first principles the band structure of Ti, and to construct theP–T phase
diagram within the Debye model. The temperature dependences of the lattice properties
calculated for all observed phases of Ti may be useful, especially when compared with
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experimental data. Previously, we have performed similar investigations for Zr [5]. The
study of the phase stability of group-IVa d metals has been stimulated by the breaking of the
hcp→ ω → bcc sequence of structural transformations observed with increasing pressure
at room temperatures. In Ti the pressure stabilizing the bcc phase at room temperature has
not yet been attained, whereas theω → bcc transition has been detected in Zr and Hf at
350 kbar and 710 kbar, respectively [6]. At ambient pressure, with temperature elevation
all metals of this group transform from the stable room-temperature hcp structure (theα-
phase) to the bcc one (theβ-phase) which persists up to the melting temperature. For Ti,
T α→β = 1155 K at ambient pressure, decreasing as dT/dP ≈ −2.6 K kbar−1 when the
pressure increases [7].

We now consider the electronic structure calculation. In recent years, first-principles
total-energy calculations within the local density approximation (LDA) have been repeatedly
performed for different crystalline modifications of Ti [8, 9]. The authors who performed
the most careful calculation [9] have found the high-pressureβ-phase to arise in this
metal at 575 kbar. Using the LDA within the framework of density functional theory
for the exchange–correlation energy calculation results, as a rule, in underestimation of the
equilibrium volume value. The generalized gradient approximation (GGA) [10] considerably
improves the quantitative agreement of the calculated equilibrium volume with the observed
one. It is by using the GGA that we succeeded in obtaining the total energies for Zr, which
allowed a realisticP–T phase diagram to be constructed [5].

Figure 1. The total energy versus volume for three phases of Ti. The solid vertical line
corresponds to the experimental volume forα-Ti.

To calculate the band structure, we used the FP-LMTO method [11]. When expanding
the basis functions in spherical harmonics inside the MT spheres, re-expanding the MT
orbitals outside the MT spheres, and expanding the crystalline potential and charge density,
the maximum values of the angular momentuml were taken to be 2, 4, and 8, respectively.
Three values of the MT-orbital tail energy (two positive and one negative for 3p states)
were chosen to describe the conduction band. In integrating over the irreducible part of the
Brillouin zone, we used 145, 165, and 792k-points forβ-, ω-, andα-Ti, respectively. In all
of the calculation variants, the MT-sphere radii were chosen to be equal and corresponding
to one of the two types ofω-phase atom:rMT = 2.52 au. The ratioc/a was taken to
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be 0.617 for theω-phase, and 1.588 for theα-phase, which corresponds to the available
experimental data.

The binding curves for the three structures of Ti investigated are presented in figure 1.
The calculated binding curves were analysed and the equilibrium properties were defined as
in [4]. Comparing the total energies, one can conclude that the GGA calculation suggests
only theω→ β transformation. As to the volume obtained for theα → ω transition, it is
found to exceed the experimental value ofV0 for the α-phase. This fact can be explained
by the specific shapes of the GGA binding curves which are shifted towards larger volumes.
In accordance with our calculations, the ground state of Ti corresponds to a rather open
hexagonalω-structure with three atoms per unit cell and the packing ratio of∼0.57, which
is unusual for d metals. ForV0 the difference in total energy between theα- andω-phases
is ∼1.0 mRyd.

We now consider the Debye model formalism. Let us define the free energy of the
system as a sum of the rigid-lattice total energy and the free vibrational energy. Then,
neglecting the electron subsystem entropy, we have

F(V, T ) = Ee(V )+ ED(V, T )− T SD(V, T ). (1)

HereEe(V ) is the total energy of the electron subsystem. In the Debye model, the vibrational
lattice energyED and the entropySD are expressed as

ED(V, T ) = 3kBTD(xD)+ E0 (2)

SD(V, T ) = 4kB

[
D(xD)− 3

4
ln(1− e−xD )

]
(3)

wherexD = 2D/T , D(xD) is the Debye function of the heat capacity normalized to unity
in the high-temperature limit [12], andE0 = 9

8kB2D is the energy of zero-point lattice
vibrations.

The final expression for the free energy has the form

F(V, T ) = Ee(V )− kB
[
D(xD)− 3 ln(1− e−xD )− 9

8
xD

]
. (4)

As seen from (4), the Debye temperature should be estimated in order to calculate the free
energy. Let us describe the technique for calculating2D. Assuming a constant sound
velocity, one can write down a simple relation between2D andB [3, 4]:

2D = K(aB/M)0.5 (5)

wherea is the lattice constant in au,B is measured in kbar,a in amu, andK = 42.172.
Using this value ofK and the experimental bulk modulus results in overestimation of2D

as compared with the experimental Debye temperature. This is due to the assumption of a
constant sound velocity which is proportional to

√
B. In [4] it was shown that for cubic

nonmagnetic metals a good agreement with experiment can be obtained with the use of
Anderson’s average for the sound velocity [3]. This makes it possible to choose for cubic
metals a universalK-value of 26.024, which relates the experimental Debye temperature
and bulk modulus quite well. However, there is no reason to believe that the sameK

may be used for noncubic metals as well. The simplest way to define the numerical value
of K for noncubic metals is to use relation (5) with the experimental values(2D)exp and
Bexp. As a result, the particularK-values will differ for the two different metals and the
crystalline structures of the same metal. Using the value ofK obtained and the bulk modulus
calculated from the total energy, one can find the theoretical value of2D and then the free
energy (4). Next, the equilibrium volume, bulk modulus, Debye temperature, and Grüneisen
constant may be redefined by minimizingF(V, T ) for each fixed temperature. Also the
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temperature dependences of the above quantities and the coefficient of volume expansion
are readily calculated (see, e.g., [4]). Note that the Debye temperature in (4) was taken to
be temperature independent.

Table 1. The equilibrium lattice parameters ofα-Ti as compared to the experimental data (V0

is the equilibrium volume,B0 is the bulk modulus,γ0 is the Gr̈uneisen constant, and(2D)0 is
the Debye temperature).

V0 (Å3) B0 (Mbar) γ0 (2D)0 (K)

Experimental 17.60 1.05 1.18 420.0
Calculated, atT = 0 K 17.36 1.14 1.275 369.0
Calculated, atT = 300 K 17.46 1.12 1.277 365.6

We have calculated the temperature dependences of the lattice properties for three
structures observed in Ti. For the hexagonalα- and ω-phases,K was taken to be
equal to 32.056, a value determined from the experimental values of2D and B0 for
the equilibriumα-phase. The lattice properties ofα-Ti calculated in the Debye model
at T = 0, with allowance for zero-point vibrations, and atT = 300 K are given in table 1,
in comparison with the experimental data [13] (the experimental value of2D was derived
from measurements of the low-temperature specific heat). As no experimental value ofB

for the bcc structure was available,2D was calculated with a fittedK-value of 20.456. The
fitting procedure will be described below.

Figure 2. The equation of state for theα-, ω-, andβ-phases of Ti atT = 300 K.

We now investigate theP–T phase diagram of Ti. To construct the phase diagram, the
thermodynamical Gibbs potentialsG(P, T ) should be calculated and compared for three
structures on a fixed mesh of independent parameters(P, T ):

G(P, T ) = F(V, T )+ PV. (6)

The isothermal dependencesP(V ) were calculated by direct differentiation of the free
energy,P = −(∂F/∂V )T , for each structure. TheP(V ) curves obtained atT = 300 K
are shown in figure 2. On the basis of the theoretical curves for the equation of state, the
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Figure 3. The temperature dependences of the Gibbs energy for different pressures.

specific volume was found at fixed values of temperature and pressure for each structure,
and then used in calculating the Gibbs energies (6).

The procedure for defining the points of intersection is illustrated by figure 3, displaying
the temperature dependences of the Gibbs energy forP = 0, P = 0.23 Mbar, and
P = 1 Mbar. At P = 0, for the range 0< T < 320 K, the Gibbs potential is a
minimum for theω-phase; further on, up toT = 1160 K, theα-phase becomes prefered,
while at T > 1160 K theβ-phase is realized. The points of intersection of the curves in
figure 3 determine the interfaces of theP–T diagram. The middle panel of figure 3, for
P = 0.23 Mbar, corresponds to the triple point of the phase diagram. The bottom panel of
figure 3, forP = 1 Mbar, demonstrates the formation of a high-pressureβ-phase.

The calculatedP–T phase diagram is presented in figure 4. The theoretical temperature
of the α → β transition at zero pressure differs from the experimental value by only 5 K
due to the fitting ofK for the bcc structure in (5). Using the universalK-value of 26.024
proposed in [4] for cubic metals results in an overestimatedα → β transition temperature
at ambient pressure(T α→βP=0 ≈ 2100 K). Hence, in this work we had to vary the magnitude
of K in order to get a good fit to the experimental data. Note that in a previous paper [5], a
satisfactory agreement with experiment was obtained for theα→ β transition temperature
for Zr with the universalK-value. The fitting procedure consisted in diminishing the
coefficientK so that the point of intersection of the Gibbs energy curves for the hcp and
bcc structures shifted toward lower temperatures (see figure 3). Also, the magnitude ofK
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Figure 4. TheP–T diagram of Ti.

in this work was assumed to be independent of temperature and pressure.
TheP–T diagram suggested agrees qualitatively with the available data on the pressure-

inducedα → ω transition in Ti. The model temperature of this transition is overestimated
by 100–150 K. The calculated triple point(Ptriple = 240 kbar, Ttriple = 920 K), though
different in temperature and pressure from that determined on the basis of experimental
data [7], belongs to theα → β interface. Our model predicts the formation of a high-
pressureβ-phase in Ti atPω→βT=300 K = 950 kbar. So far, the isothermal compressibility
of the group-IVa metals has been experimentally studied at room temperatures only up to
710 kbar [6]. Most probably, in contrast to the case for Zr and Hf, a pressure sufficient for
theω→ β transition is still not attained for Ti.

The authors are indebted to S Savrasov for providing the FP-LMTO code, and to
E Salamatov and E Chulkin for helpful discussions.
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